Biofuels production become a target for many researchers nowadays. Biodiesel is one the most important biofuels that are produced from biomass using economics and modern techniques. The ductile cast iron solid waste dust is one of the wastes produced by the cast iron industry which has a bad effect on the environment. This paper investigates the possibility of reusing ductile cast iron solid waste as a biodiesel heterogeneous catalyst used in its production from sunflower waste cooking oil. Four reaction parameters were chosen to determine their effect on the reaction responses. The reaction parameters are M:O ratio, reaction time and temperature, and catalyst loading. The reaction responses are the biodiesel and glycerol conversions. The upper and lower limits are selected for each reaction parameter such as (50–70 °C) reaction temperature, (5–20) methanol to oil molar ratio, (1–5%) catalyst loading, and (1–4 h) reaction time. Optimization was done with economic and environmental targets which include lowering the biodiesel production cost, increasing the volume of biodiesel produced, and decreasing the amount of resulting glycerol. The optimum reactions are 20:1 M:O molar ratio, 65 °C reaction temperature, 5 wt% catalyst loading, 2 h reaction time, and a stirring rate of 750 rpm. The biodiesel conversion resulting at this optimum reaction conditions is 91.7 percent with agreed with all biodiesel standards. The catalyst usability test was done it was found the catalyst can be used up to 4 times after that a fresh catalyst is required to be used.
Loading....